正比例教学设计(一):
教材分析:
正比例这个资料是学生在学习了比的好处、比的化简与比的应用等资料的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的好处,决定两个量是否成正比例。教材带给了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生透过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的好处,会决定两个量是否成正比例。
学情分析:
学生在学习乘法时,已经明白一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个资料是有个初步的接触。在这个资料的学习中,学生最容易掌握的是根据表格中的具体数据决定两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述决定两个量是否成正比例,个性是学生对学过的数量关系不熟悉时就更难了。
教学目标:[由www.duanmeiwen.com整理]
1、结合丰富的事例,认识正比例,理解正比例的好处,并初步感受生活中存在很多成正比例的量。
2、能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学重点:
1、结合丰富的事例,认识正比例,理解正比例的好处。
2、能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学难点:
能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学用具:
课件
教学过程:
一、在情境中感受两种相关联的量之间的变化规律。
(一)情境一
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(二)情境二
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
(三)情境三
1、观察图,分别把正方形的周长与边长,面积与边长的变化状况填入表格中。请根据你的观察,把数据填在表中。
2、填完表以后思考:这两个表格中的变化状况与上两题的变化规律相同吗?
说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值必须都是4。正方形的面积一边长的比是边长,是一个不确定的值。
(四)归纳正比例的好处
1、时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
2、购买苹果应付的钱数与质量有什么关系?
3、正方形的周长与边长有什么关系?
4、观察思考成正比例的量有什么特征?
一个量变化,另一个量也随着变化,并且这两个量的比值相同。
5、小结
两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)必须,这两种量就是成正比例的量,它们的关系就是正比例关系。
二、巩固练习
1、想一想
正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化状况如下
小明的年龄/岁67891011
爸爸的年龄/岁3233
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再群众汇报
三、全课总结:说说你在这节课中学到了什么知识?有什么不明白的地方?
板书设计:
正比例
路程÷时间=速度(必须)
总价÷数量=单价(必须)
正方形的周长÷边长=4(必须)
两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)必须,这两种量就成正比例。
正比例教学设计(二):
《正比例》教学设计
教学资料:正比例
教材分析:
正比例这个资料是学生在学习了比的好处、比的化简与比的应用等资料的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的好处,决定两个量是否成正比例。教材带给了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生透过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的好处,会决定两个量是否成正比例。
学情分析:
学生在学习乘法时,已经明白一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个资料是有个初步的接触。在这个资料的学习中,学生最容易掌握的是根据表格中的具体数据决定两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述决定两个量是否成正比例,个性是学生对学过的数量关系不熟悉时就更难了。
教学目标:
1.结合丰富的事例,认识正比例,理解正比例的好处,并初步感受生活中存在很多成正比例的量。
2.能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学重点:
1、结合丰富的事例,认识正比例,理解正比例的好处。
2、能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学难点:
能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学用具:
课件
教学过程:
一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(二)情境二:
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
(三)情境三:
1、观察图,分别把正方形的周长与边长,面积与边长的变化状况填入表格中。请根据你的观察,把数据填在表中。
2、填完表以后思考:这两个表格中的变化状况与上两题的变化规律相同吗?
说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值必须都是4。正方形的面积一边长的比是边长,是一个不确定的值。
(四)归纳正比例的好处
1.时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
2.购买苹果应付的钱数与质量有什么关系?
3.正方形的周长与边长有什么关系?
4.观察思考成正比例的量有什么特征?
一个量变化,另一个量也随着变化,并且这两个量的比值相同。
5.小结
两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)必须,这两种量就是成正比例的量,它们的关系就是正比例关系。
二、巩固练习
1.想一想:
正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化状况如下:
小明的年龄/岁
6
7
8
9
10
11
爸爸的年龄/岁
32
33
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再群众汇报
三、全课总结:说说你在这节课中学到了什么知识?有什么不明白的地方?
板书设计:
正比例
路程÷时间=速度(必须)
总价÷数量=单价(必须)
正方形的周长÷边长=4(必须)
两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)必须,这两种量就成正比例。
正比例教学设计(三):
《正比例的好处》教学设计
【课题】:
人教版小学数学六年级(下)《正比例的好处》
【教材简解】:
正比例的好处是小学数学六年级(下)第三单元的教学资料。这部分知识是在学生具有比和比例的知识以及认识常见数量关系的基础上编排的,透过对两个数量持续商必须的变化,理解正比例的好处,初步渗透函数的思想。
【目标预设】:
1、知识潜力:使学生认识正比例的好处,理解、掌握成正比例量的变化规律及其特征。
2、过程与方法:能根据正比例的好处决定两种相关联的量成不成正比例关系。
3、情感态度与价值观:进一步培养学生观察、分析、综合等潜力;培养学生的抽象概括潜力和分析决定潜力。
【重点、难点】:
重点:使学生理解正比例的好处。
难点:引导学生透过观察、思考发现两种相关联的量的变化规律(即它们相对应的数的比值必须),从而概括出正比例关系的概念。
【设计理念】:
本节课的教学设计遵循以下几点设计理念:
1、抽象实际事例中的数量变化规律,构成正比例的概念。
例1是让学生初步感知“两种相关联的量”以及“成正比例的量”的含义。教材先指出路程和时间是两种相关联的量,用“时间变化,路程也随着变化”具体解释两种量的“相关联”。再指出这辆汽车行驶的路程和时间的比的比值总是必须,能够说路程和时间成正比例,它们是成正比例的量,学生在那里首次感知了正比例关系。“试一试”是在另一组数量关系中继续感知正比例关系。使得学生在上面两个实例中感知了正比例的具体含义,然后教材再抽象概括出正比例的好处,这一环节是概念构成的重要环节,也是发展数学思考的极好机会。
2、用图像直观表达正比例关系。
例2是按照《课程标准》的要求“根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值”编排的,设计的三个问题体现了教学正比例图像的三个步骤。
第一步认识图像上的点,说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。
第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。
第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。
【设计思路】:
本课教学设计我从生活中一些常见的数量关系入手,复习一些数量之间的相互关系,打破了传统的正比例好处教学“复习——教学例1——教学例2——揭示概念——巩固练习”的教学模式,取而代之是让学生充分发挥学习的用心性,以及在学习过程中的合作探究潜力,进而总结出新知的尝试,本节课的教学依据“自学——反馈——探究——应用”这一课堂基本模式设计,结合新课程理念让学生在自主探究的氛围下学习,以求在理想的教学过程中产生理想的学习效果。
【教学过程】:
一、复习准备:
口答(课件演示)
1、已知路程和时间,怎样求速度?
2、已知总价和数量,怎样求单价?
3、已知工作总量和工作时间,怎样求工作效率?
二、新授教学:
(一)自学
课件出示以下两组自学材料:
1、一辆汽车行驶的时间和路程如下
时间(比)
1
2
3
4
5
6
……
路程(千米)
50
100
150
……
观察上表,填写表格并思考下列问题:
(1)表中有哪两种相关联的量?
(2)路程是怎样随着时间变化而变化的?
(3)相对应的路程和时间的比分别是什么?比值是多少?
2、一种圆珠笔,枝数和总价如下表
数量(枝)
1
2
3
4
5
6
……
总价(元)
1.6
3.2
4.8
……
观察上表,填写表格并思考下列问题:
(1)表中有哪两种相关联的量?
(2)总价是怎样随着数量变化而变化的?
(3)相对应的总价和数量的比分别是什么?比值是多少?
【设计意图:以学生常见的数量关系入手,以表格并附思考问题的形式出现,激起学生的认知冲突,激发学生的学习兴趣和强烈的求知欲,让学生边填边思,为学生用心参与后面的学习活动打下基础。】
(二)反馈:
师:在填表过程中,你发现了什么?每一组材料中的两种量有什么关系?它们的变化有规律吗?
1、学生自由说,小组内总结。(小组汇报,教师小结。)
小结:像这样表里的两种量,一个量变化,另一个量也随着它的变化而变化的,这两种量就是相关联的量。
【根据学生反馈板书】:
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是必须的
(说明:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“必须”)
2、概括正比例的好处。
(1)师:刚才同学们透过填表、交流,明白了时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是必须的。总价和数量也是两种相关联的量,总价随着数量的变化而变化。数量扩大,总价随着扩大;数量缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和数量的比的比值总是必须的。这样我们就能够用数量关系式来表示:
【板书】:路程÷时间=速度(必须)总价÷数量=单价(必须)
问:谁来说说这两个数量关系式的意思?
(2)小结:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)必须,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们这天要学习的资料。
【板书课题】:成正比例的量
追问:决定两种相关联的量成不成正比例的关键是什么?(比值是不是必须)
(3)字母表达关系式。
问:如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?
【板书】:=k(必须)
(4)质疑。
师:根据正比例的好处以及表示正比例关系的式子想一想:构成正比例关系的两种量务必具备哪些条件?
【设计意图:透过学生自学两例“正比例”好处教学素材的反馈,让学生感悟其基本特征,从而由两个具体数学现象归纳抽象出数学结论,让学生经历这个过程,丰富他们的数学体验,实现“用教材教”而不是“教教材”这一新课程理念的转变。】
(三)探究:
1、课件出示表格
时间/时
1
2
3
4
5
6
……
路程/千米
80
160
240
320
400
480
……
根据表中列出的两种量,教师在黑板上分别画出横轴和纵轴。
问:你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像。
3、展示、纠错。
强调:每个点都就应表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎样看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
【设计意图:透过学生小组讨论、总结、汇报、师生交流后概括出的数学新知,再透过用图像直观表达正比例关系,进一步验证学习正比例关系的两个量用图像表示的状况,以帮忙学生构建立体的概念模型。师生的平等交流与探讨,激起情感共鸣,增强课堂的活力。】
(四)应用:
1、决定下面每题中两种量是不是成正比例,并说明理由。
(1)苹果的单价必须,购买苹果的数量和总价。
(2)长方形的长必须,它的宽的面积。
(3)每小时织布米数必须,织布总米数和时间。
(4)小新跳高的高度和他的身高。
学生独立思考,指名回答,课件演示核对。
2、完成练习十三第2题。
先让学生独立决定,再指名学生有条理地说明决定的理由。
3、完成练习十三第3题。
先让学生说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米?再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值必须时,它们才成正比例。
【设计意图:给学生练习的空间,加强学生对成正比例量的认识及正比例好处的理解,在对知识的实际应用中获得成功的体验,实现对新知的巩固。】
4、完成练习。
学生先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。(组织同桌讨论和交流)
三、课堂小结:
师:透过这节课的学习,你们都明白了什么?怎样决定两种量是否成正比例?
四、课堂延伸:
思考:正方形的边长和面积成正比例吗?
【设计意图:知识的拓展,能激活学生的思维,培养学生多角度思考问题的潜力,给学生更广的思维空间,充分发挥学生的潜能,使学生获得更好的发展。】
五、课外作业:
完成练习十三第1、4题。
六、板书设计:
正比例的好处
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是必须的
路程÷时间=速度(必须)总价÷数量=单价(必须)
=k(必须)
正比例教学设计(四):
教学资料:北师大版小学数学六年级下册《正比例》
教学目标:
1、结合丰富的事例,认识正比例。
2、掌握成正比例变化的量的变化规律及其特征。
3、能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学重点:认识正比例的好处和怎样决定两个变化的量是不是成正比例。
教学难点:决定两个变化的量是不是成正比例。
教具准备:课件
教学过程:
一、导入新课:
出示:路程、单价、正方形的边长……
根据上面的某个量,你能想到些量?为什么?
在我们的生活中象这样的一个量随着另一个量的变化的例子还有很多很多,这天我们就继续来研究这些相互依靠的变量间的关系。
二、新课探究:
(一)、活动一:初步感受正比例关系。
1、课件出示正方形周长与边长、面积与边长的变化状况:
(1)请把表格填写完整。
(2)观察表格,你能发现什么规律?
(群众填表后,独立观察,发现规律,
2、组织学生交流发现的规律,引导学生比较两个规律的异同点。
3、小结:正方形的周长和面积虽然都是随着边长的增加而增加,但这两个规律又有一个不同点,在变化的过程中,正方形的周长与边长的比值是不变的,都是4,而正方形的面积与边长的比值是一向在变化的。
所以两个相互依靠的变量之间的关系是不一样的。
(二)、活动二:结合实例体会正比例的好处:
1、课件出示:
(1)将表格填完整。
(2)从表格中你能发现什么规律?
(以小组为单位,选取一个情境进行研究。)
2、交流汇报:
(三)、活动三:揭示正比例的好处。
1、这2规律有什么共同点?
教师随着学生的回答板书:
都是一个量随着另一个量的变化而变化,并且这两个变量所对应的数的比值持续不变。
2、教师揭示正比例的含义。
像这样两个相关联的量,一个量随着另一个量的变化而变化,并且两个量的比值不变,这两个量就成正比例。(教师随着板书完整。)
3、结合实例说明:
表一中路程随着时间的变化而变化,并且路程和时间的比值是不变的,所以路程和时间成正比例。
学生说一说表二的两个量。
4、用字母表示出正比例关系。
如果我们用X、Y表示两个变化的量,用K表示它们的比值,成正比例的两个变量之间的关系能够怎样用式子表示?
(四)、活动四:决定两个量是不是成正比例的量。
1、出示活动一中的表格:
正方形的周长与边长是不是成正比例的量?正方形的面积与边长是不是成正比例的量?为什么?
学生自主决定后交流。
2、看来决定两个量是否成正比例务必具备几个条件?
强调:只有具备两个条件,我们才能说这两个量成正比例。
三、课堂练习:
1、根据下表中的数据,决定表中的两个量是不是成正比例:
平行四边形的面积/cm2
6
12
18
24
30
平行四边形的高/cm
1
2
3
4
5
(1)
买邮票的枚数/枚
1
2
3
4
5
所付的钱数/元
0.8
1.6
2.4
3.2
4.0
(2)
2、小明和爸爸的年龄变化状况如下:
小明的年龄/岁
6
7
8
9
10
11
爸爸的年龄/岁
32
33
(1)把表格填写完整。
(2)父子的年龄成正比例吗?为什么?
3、决定下面各题中的两个量是否成正比例,并说明理由。
(1)每袋大米的质量必须,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长和长。
(4)圆的周长和直径。
(5)圆的面积和半径。
四、课堂总结:
透过本节课的学习,你学到了什么新本领?其实啊,在生活中还有很多成正比例的两个量,课后请大家用心去发现,找出生活中成正比例的量。
板书设计:
正比例
一个量随着另一个量的变化而变化
两个量的比值是不变
x=ky(k必须)
教学反思:
1.课堂流程的设计,延展了探究空间。
本节课为学生设计了四大板块,第一板块“初步感受”板块,在这一板块利用学生熟悉的数学情境“正方形的周长与边长、面积与边长的关系”让学生明白同样都是一种量随着另一种量的增加而增加,但在变化过程中却存在着不同的关系。让学生对正比例有个初步的感受。第二板块是选取材料、主体解读的“体会好处”板块。在这一板块中,借助两则具体材料的依托,让学生经历自主选取、独立思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第三板块是交流思维、构成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并透过回馈具体材料的概念解释促进了理解的深入。第四板块是“应用”板块,在学生认识了正比例后,让学生自主决定两个量是否成正比例,这两先以表格出现,再以文字叙述的方式呈现,使学生从直观认识向抽象思维发展。这样的设计,使探究空间却更为宽广。
2.数学材料的呈现,丰富了体验途径。
为了给学生的数学学习带给更为充足的材料,将第二三个情境作为可供学生自主选取的两则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生能够凭借个体独立解读、小组交流互评的渐进过程,充分深入地自主探究,在亲历和体验中达成学习目标。而对于另一个未选的数学材料,学生则能够借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。这样的教学设计,使得学生的数学学习不再是面面俱到和点到为止,而是重点突破且走向深入的。
3.学习方式的选取,促进了深度感悟。
教师让学生采取选取材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选取的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。能够说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。
正比例教学设计(五):
教学目的:
1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。
2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。
教具、学具准备:
教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。
教学过程:
一、复习准备
1、什么是比例?
2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。
时间(时)27
路程(千米)180630
二、导入新课
教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。
三、进行新课
用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。
时间(时)12345678…
路程(千米)90180270360450540630720…
教师:先独立思考后再讨论、交流、回答以下问题
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还能够从表中发现哪些规律?
教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。
板书:相关联。
教师:你们还发现哪些规律呢?
引导学生归纳出:
(1)时间和路程是相关联的两种量,路程随着时间的变化而变化;
(2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;
(3)路程和时间的比值都是90;时间和路程的比值都是1/90。
路程和时间的比值是什么?(速度)
在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)
数量(米)1234567…
总价(元)8.216.424.632.841.049.257.4…
先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。
学生分析后引导学生归纳:
(1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;
(2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;
(3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。
教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母X和Y表示两种相关联的量,用K表示它们的比值,正比例关系能够用式子表示为X/Y=K(必须)。
教师:请同学们相互说一说生活中还有哪些是成正比例的量?
指导学生完成第56页“做一做”。
四、巩固练习
指导学生完成练习十六第1~3题。
五、课堂小结
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
学生小结后教师对全课所学的知识进行归纳。
创意作业
小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。
正比例教学设计(六):
教学资料:
人教版23页至24页例1以及相应的“做一做”。
教学目标:
1、掌握用正比例的方法解答相关应用题。
2、透过解答应用题使学生熟练地决定两种相关联的量是否成正比例,从而加深对正比例好处的理解
3、培养学生分析问题、解决问题的潜力。
教学重点:
掌握用正比例的方法解答应用题
教学难点:
能正确决定两种相关联的量成什么比例,正确列出比例式。
教学过程:
一、激趣导入
1、在上新课之前,先考考大家对保亭县的认识。你明白保亭县最高的建筑物是什么?它位于何处?
2、对于保亭县最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?
刚才同学们想出了很多的方法去测量电视塔的大概高度。这天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算电视塔的大概高度。看谁学得最棒。
二、自学互动
先来研究这样一个问题。
1、出示例1
一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
2、分析解答应用题
(1)请一位同学读一读题目
(2)这道题要求什么?已知什么条件?
(3)能不能用以前学过的方法解答?
(4)小组合作学习交流,边汇报边板书
140÷2×5
=70×5
=350(千米)
答:________________。
3、适时点拨
这两种方法都合理,还能够有什么方法解答呢?
学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?
三、探讨新知
1、提出问题
师:请同学们结合课本上的例题,讨论以下问题。
(1)题目中相关联的两种量是________和________。
(2)________必定,_________和_________成_______比例联系。
(3)______行驶的_____和_____的________相等。
2、学生自学例题后小组讨论。
3、组间交流:小组代表把讨论结果在班内交流
4、学生尝试解答后评价(指名学生板演)
5、怎样检验?把检验过程写出来。
6、概括总结
(1)用比例解答应用题与用算术方法解答应用题的解法不同,但计算结果相同,如果题目中没有要求的,我们采取任何一种方法都能够,但如果题目要求用比例解的,就必定要用比例的方法解。
(2)明确解题步骤。(板)
用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。
1.分析决定
2.找出列比例式所需的相等联系
3.设未知数列等式
4.求解
5.检验写答语
四、测评训练
1、基本练习
(1)例题改编
①如果把这道题的第三个和问题改成:“已知公路长400千米,需要行驶多少小时?”该怎样解答?
②让学生解答改编后的应用题,群众订正。
③小结:比较一下改编后的题和例1有什么联系和区别?
改编例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法没有改变,只是要设需要行驶的小时数为x,列出的等式是:
140/2=400/x
(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?
五、总结全课
同学们,你们这天学到了什么?有什么收获呢
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 3372575805@qq.com 举报,一经查实,本站将立刻删除。如若转载,请注明出处:https://yuedu.yahoo001.com/fanwen/215997.html